Dynamical View of Energy Coupling Mechanisms in Active Membrane Transporters

Proton-Driven Sugar Transport in LacY

Mechanically(?) Driven Transporters of the Outer Membrane **Emad Tajkhorshid**

Computational Structural Biology and Molecular Biophysics <u>www.csbmb.beckman.illinois.edu</u>

Department of Biochemistry Center for Biophysics and Computational Biology Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign

25th Molecular Modeling Workshop April 2011, Erlangen, Germany

ATP-Driven Transport in ABC Transporters

ADP/ATP Exchange in Mitochondria (AAC)

Na⁺-Driven Neurotransmitter Uptake Glutamate Transporter

Molecular Dynamics Simulations

Solving the Newtonian equations of motion for all particles at every time step

Major limitations:

- Time scale / sampling
- Force field approximations

SPEED LIMIT

Major advantage:

- **1 fs**
- Unparalleled spatial and temporal resolutions, simultaneously

Access to More Computational Power

HP 735 cluster 12 processors (1993)

SGI Origin 2000 128 processors (1997)

PSC LeMieux AlphaServer SC 3000 processors (2002)

Ranger/Kraken ~60,000 processors (2007)

Blue Waters (UIUC) 200,000+ processors (2012)

Anton/DESHAW/PSC 512 processors (2010)

Complexity of Transporter Function

- Active transport is **coupled** to an energy source in the cell
- Transporters Function on **µs and longer** time scales
- Protein conformational changes of various forms and magnitudes coupled to **step-wise** vectorial translocation of the substrate and co-transported materials
- The **sequence** of molecular events is largely unknown

In situ Molecular Dynamics Simulations

Atom count: 100-500k ~10 ns/day on 128-1024 processors 100-500 ns for each system

Hard to define the number of (sub)states involved?

Glutamate Transporter

Amara and Fontana, Neurochemisty International 41:313-318 (2002)

Glutamate Transporter (Glt_{ph})

Yernool, Boudker, Jin, Gouaux. Nature, 431: 811-818, 2004.

Sequence and Coupling of Events in an Ion-Coupled Transporter

	$\operatorname{monomer}$	substrate	Na1	Na2
	S1A	+	+	+
	S1B	+	+	-
	S1C	+	-	+
	S2A	+	-	-
	S2B	-	-	-
	S2C	-	-	-
	S3A	-	+	+
	S3B	-	+	-
	S3C	-	-	+
_		11 1.1 D. 1	· 1 T	1 2000

Z. Huang and E. Tajkhorshid, Biophysical Journal 2008

Yernool, Boudker, Jin, Gouaux. Nature, 431: 811–818, 2004.

Dynamics of the *Extracellular* Gate w/ substrate w/o substrate S1A S2B HP1 HP1 S1B 52C SIC 34 52A 30 RMSD (3 2 1015 10 15 2020S1A S2B HP2 HP2 \$1B 2C S1C 3A 52A RMSD (Å 3 2 10 15 5 10 15 20 20time (ns) time (ns) Z. Huang and E. Tajkhorshid, *Biophysical Journal* 2008

Inward-Facing, Occluded Gltph

doi:10.1038/nature08616

nature

ARTICLES

Transport mechanism of a bacterial homologue of glutamate transporters

Nicolas Reyes¹, Christopher Ginter¹ & Olga Boudker¹

Glutamate transporters are integral membrane proteins that catalyse a thermodynamically uphill uptake of the neurotransmitter glutamate from the synaptic cleft into the cytoplasm of glia and neuronal cells by harnessing the energy of pre-existing electrochemical gradients of ions. Crucial to the reaction is the conformational transition of the transporters between outward and inward facing states, in which the substrate binding sites are accessible from the extracellular space and the cytoplasm, respectively. Here we describe the crystal structure of a double cysteine mutant of a glutamate transporter homologue from *Pyrococcus horikoshii*, Glt_{Ph}, which is trapped in the inward facing state by cysteine crosslinking. Together with the previously determined crystal structures of Glt_{Ph} in the outward facing state, the structure of the crosslinked mutant allows us to propose a molecular mechanism by which Glt_{Ph} and, by analogy, mammalian glutamate transporters mediate sodium-coupled substrate uptake.

Reyes, et al., Nature 2009

Na1 Dependence of the Cytoplasmic Gate

Inward-facing, occluded with Na1/substrate Occluded to open transition after Na1 release

vSGLT: A Secondary Membrane Transporter in the **Occluded** Inward-Facing State

Faham et al., Science, 810-814, 2008

Na⁺ was modeled based on LeuT

TM2

Spontaneous Na+ Unbinding in Multiple Simulations

- Several independent simulations, all resulting in Na⁺ unbinding
- The crystal structure is not an occluded state, rather an **open** inward-facing state.

J. Li and E. Tajkhorshid, Biophysical Journal 2009

Comparison of the Na⁺ Binding Sites in vSGLT, LeuT and Mhp1

LeuT (PDB:2A	A65)	vSGLT (PDB:3DH4)		
bond	distance (Å)	bond	distance (Å)	
G20(O)–Na	2.23	A62(O)–Na	3.64	
V23(O)–Na	2.15	I65(O)-Na	3.32	
A351(O)–Na	2.29	A361(O)–Na	3.23	
$ m T354(m O\gamma)- m Na$	2.25	$S364(O\gamma)$ –Na	3.13	
$ m S355(O\gamma)- m Na$	2.35	$ m S365(O\gamma)- m Na$	3.68	
bond angle	angle (degree)	bond angle	angle (degree)	
$V23(O)$ –Na–S355 $(O\gamma)$	99.3	$I65(O)$ –Na–S $365(O\gamma)$	60.5	
$V23(O)$ –Na–T $354(O\gamma)$	112.8	I65(O)–Na–S364(O γ)	133.0	
${\rm T354(O\gamma)-Na-S355(O\gamma)}$	147.9	$S364(O\gamma)-Na-S365(O\gamma)$	73.5	
G20(O)-Na-A351 (O)	166.5	A62(O)-Na-A361(O)	150.6	

vSGLT: yellow LeuT: pink Mhp1: orange

vSGLT: **open** state LeuT,Mhp1: **occluded** state

J. Li and E. Tajkhorshid, Biophysical Journal 2009

Artificially Recovering the Occluded State

Cytoplasmic Gate?

Substrate-bound state \rightarrow substrate-free state?

Early Stage of Substrate Release Captured by Free MD

ATP-Driven Transport in ABC Transporters

- Architecture
- -2 NBDs
 - Conserved domains
 - ATPase activity
- -2 TMDs
 - Diverse sequence and structure
 - Substrate transport
- -1 BP
 - ABC importers only
 - Substrate recognition and binding

Nucleotide-Dependent State of NBDs

Simulation Systems

- MalK dimer (1Q12.PDB)
- Placing Mg²⁺
- Solvate (80,000 atoms)
- Equilibrium MD 75 ns
- 4 simulation systems
- -ATP / ATP
- _ADP-P_i / ATP
- _ATP / ADP-P_i
- –ADP-P_i / ADP-P_i

1 or 2 ATP hydrolysis? Hydrolysis or release of products?

Simulating the Immediate Effect of ATP Hydrolysis

ADP/Pi-Bound

ATP-Bound

P. Wen and E. Tajkhorshid, Biophysical Journal 2008

1 hydrolysis - top

2 Hydrolysis

1 hydrolysis - bottom

P. Wen and E. Tajkhorshid, Biophysical Journal 2008

Pinpointing the Mechanism

Nucleotide Binding Domains

- Two subdomains
 - RecA-like subdomain
 - Majority of ATP binding site
 - Walker A motif
 - Helical subdomain
 - Complimentary to ATP binding
 - Signature "LSGGQ" motif
- Two nucleotide binding sites
 - Both at the dimer interface
 - "Nucleotide-sandwiched" dimer

ATP binding → dimerization Hydrolysis → dimer opening Why?

Discovery of Buried Charges

in the maltose transporter

MalEFGK, ATP-bound ~320,000 atoms averaged between t = 70-80 ns MalEFGK, Nucleotide-Free ~320,000 atoms averaged between t = 70-80 ns

Discovery of Buried Charges in the molybdate/tungstate transporter

t = 0-10 ns

ModABC, ADP docked ~220,000 atoms averaged between t = 0-10 ns

Discovery of Buried Charges in other ABC transporters

MsbA ATP-bound ~200,000 atoms averaged between t = 0-10 ns

BtuCDF, Nucleotide-Free ~220,000 atoms averaged between t = 0-10 ns

Conserved Arginines in the Helical Subdomain

Key Role of Buried Charges in NBD Dimerization

Recovery of NBD Dimerization in the Mutants

Arg¹³⁹-Arg¹⁴⁰-Gln¹⁴¹ Gln¹³⁹-Arg¹⁴⁰-Arg¹⁴¹ (wt = Arg¹³⁹-Gln¹⁴⁰-Arg¹⁴¹)

Recovery of NBD Dimerization in the Mutants 40 **Arg139 Neutralized** Arg139-GIn140 Swapped 38 Site A 36 Site B Subdomain Distance (Å) ³⁴ ³⁵ ³⁶ ³⁶ ³⁶ ³⁶ **Arg141 Neutralized** GIn140-Arg141 Swapped 32 30 20 30 40 20 30 10 10 50 0 40 Simulation Time (ns)

Conclusion: <u>Buried</u> positive charges in the helical subdomains are essential for NBD dimerization

So Why/How Do NBDs Dimerize?

- Three factors determine the NBD dimerization
 - -Binding
 - Walker A motif binds ATP
 - -Attracting
 - Positive charged residues in the helical subdomain
 - Optimal: 2 positive charges near the LSGGQ motif
 - Location, location, location!
 - –Locking
 - Network of hydrogen bonds between the ATP and the LSGGQ motif

Unusually Strong Electrostatic Potential

Average electrostatic potential of AAC

• Very strong (~1.4V) positive potential at the AAC basin provides the driving force for ADP binding.

Y. Wang and E. Tajkhorshid, PNAS 2008

Commonality of Electrostatic Features in MCF Members Actin ADP/ATP Actin Hig ADP/ATP

- Almost all MCF members are strongly charged (positive).
- Most substrates of MCFs are negatively charged.
 - Substrate recruitment
 - Anchoring the proteins into the negatively charged inner mitochondrial membrane.

Carrier	Pe	Substrate	Se
Aac1p	+16	ADP/ATP	-3/-4
Aac2p	+20	ADP/ATP	-3/-4
Aac3p	+20	ADP/ATP	-3/-4
Sal1p [†]	+15	Mg-ATP/P _i	-2/-3
Leu5p	+17	*C _o A	-4
Flx1p	+18	*FAD	-2
Rim2p	+18	Py(d)NDP/Py(d)NTP	-3/-4
Ndt1p	+5	NAD +	-1
Ndt2p	+16	NAD +	-1
Ggc1p	+19	GDP/GTP	-3/-4
Tpc1p	+17	ThPP	-1
Ant1p	-6	AMP/ADP/ATP	-2/-3/-4
Mir1p	+9	Pi	-3
Pic2p	+17	Pi	-3
Oac1p	+13	oxaloacetate	-2
Dic1p	+14	malate	-2
Odc1p	+19	2-oxoglutarate	-2
Odc2p	+19	2-oxoglutarate	-2
Sfc1p	+19	succinate/fumarate	-2
Ctp1p	+14	citrate	-3
Agc1p [†]	+14	aspartate/glutamate-H +	-1/0
Crc1p	+17	carnitine	0
Ort1p	+10	ornithine	0
Pet8p	+13	S-adenosyl methionine	0
Mrs3p	+4	*Fe +2	+2
Mrs4p	+2	*Fe +2	+2
Yhm2p	+18	Unknown	_
Ymc2p	+9	Unknown	-
Yfr045wp	+17	Unknown	-
Ypr011cp	+13	Unknown	_
Ymc1p	+10	Unknown	_
Ydl119cp	+18	Unknown	-
Ymr166	+7	Unknown	_
Mtm1p	+15	Unknown	—

Y. Wang and E. Tajkhorshid, PNAS 2009

Capturing Substrate Binding - Case II

Characterizing Substrate Selectivity

Phosphate Binding Site

R45 Y393 Y266 H165 Y76 **Y38** G3P K80 Glycero-phosphate **Binding Site**

GlpT protein	$K_{\rm d} P_{\rm i}$ binding $(\mu { m M})$	$K_{\rm d}$ G3P binding (μ M)	$K_{\rm d}$ phosphomycin binding (μ M)	G3P-P _i exchang transport activity?	e
Wild-type N162A Y266F X393E	7.4 ± 0.4 4.4 ± 1.4 1.7 ± 0.4 8.6 ± 0.7	0.8 ± 0.2 No binding No binding	0.18 ± 0.02 No binding No binding 43 ± 6	Yes n.d. No n.d	Ch. Law, G. Enkavi, DN. Wang and E. Tajkhorshid, Biophysical Journal 2009 .

Capturing the Initial Steps of the Rocker-Switch Mechanism

Substrate induced straightening of Helices 5 and 11 Normal Mode Analysis

C-term

Cytoplasmic View

Ć

N-term

G. Enkavi and E. Tajkhorshid, Biochemistry 2010

Computational Structural Biology and Molecular Biophysics Group (CSBMB)

csbmb.beckman.illinois.edu